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Closed-Form Expressions for the Current Density

on the Ground Plane of a Microstrip Line,

with Application to Ground Plane Loss

Christopher L. Holloway and Edward F. Kuester

AMract-In this paper closed-form expressions for the cnrrent density

on the gronnd plane of a microstrip line are derived. The derivation
is based on a qnasistatic Green’s fnnction approach. These expressions

are compared to both experimental and numerical values, and excellent
agreement is demonstrated. The loss on a gronnd plane for a microstrip

structure is calculated rising these expressions, and comparisons with
results from Wheeler’s incremental inductance rnle are made.

I. INTRODUCTION

Microstrip lines are used in numerous electronic devices and

products ranging from feeding networks in MIMIC components to

signal traces on printed circuit boards. The current distribution on

the ground plane of the microstrip line can be important for design

considerations. For example, knowledge of ground plane current

distribution can aid in determining the amount of coupling between

adj scent printed circuit traces fabricated on a common ground plane

(see [18]), or can aid in determining how wide a truncated ground

plane might need to be to ensure that edge effects are acceptably low.

Knowing this current distribution can also aid in determining the loss

due to finite cond~ctivity of the ground plane (see Section III).

Numerical techniques can be used to obtain the current on the

ground plane. These techniques are capable of high accuracy, but

are computationally intensive and hence do not lend themselves to

simple design procedures. The current on the ground plane can be

derived from an integration of the current on the strip with a Green’s

function. In this paper two different approximate expressions for the

current distribution on the strip are used. The first is a very crude

constant approximation for the strip current, whereas the second is

the more accurate Kobayashi distribution.

This paper is organized as follows: After the introduction, the Sec-

tion II presents derivations of the ground plane current distributions

for different strip current approximations. Section III illustrates how

the loss due to the ground plane can be calculated, and compares this

to results obtained from Wheeler’s incremental inductance rule. In

Section IV, other applications of these closed-form expressions are

discussed.

II. DERIVATION OF A CLOSED FORM EXPRESSION FOR

THE GROUND PLANE CURRENT ON A MICROSTRIP LINE

If the H fields for the microstrip line (Fig. 1) are known then the

current density on the ground plane can be found by

~GP(Z) = Z. X ~lH=_h. (1)

In general, all three vector components of current may exist.

However, in planar circuits the J, component of the current is often

the dominant component, as shown in [ 14] and [ 15]. Schumacher [ 15]

~ <0.1.shows that Up to 12 GHJ (for ~ = .98), the ratio ,~zI~az
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Fig. 1. Results for the normalized current density for a rnicrostrip for w =

0.62 mm and h = 0.635 mm, where z is the distance measured from the
center of the strip. Also shown here are the experimental results obtained from
Schumacher [15]. The solid curve corresponds to a constant strip current,
the dashed curve corresponds to the Kobayaski distributions, and the stars
corresponds to Schumacher’s experimental results,

When this ratio is squared, the result is only 1.0% of the total power

loss. Kobayashi [14] also shows that even as high as 20 GHz (for
I‘Z Im.. < ().15. Little generality is

: = 10 and smaller), the ratio = _

lost by considering this quasi-TEM case, and so only the z component

of the current, and thus the x component of the H-field, is needed.

The x component of the H-fields can be obtained from the

z component of the magnetic vector potential (~), where A. can

be found from a quasistatic Green’s function approach (for details

see [12]). Leaving out the details, it can be shown that the current

density on the ground plane reduces to

where w is the width of the strip and h is the height of the strip

above the ground plane (see Fig. 1).

If the current density on the strip is known then the current

density on the ground plane is determined from (2). In this paper

two different approximate expressions for the current distribution on

the strip are used to determine ~GP (z). The first is a crude constant

approximation for ~,, whereas the second is the more accurate

Kobayashi distribution.

A. Calculation for JGP With a Constant

Current Distribution on the Strip

In this section the ground plane current is calculated by assuming

that the current on the strip takes on the form: J, = ~, where 1 is

the total current on the strip.

Upon substitution into (2), the current density on the ground plane

reduces to the simple closed form expression

‘Gp(’’=-a’an-’(=)+’an-ww‘3)
Fig. 1 shows the results for the normalized current density (~)

for a microstrip for ~ = 0.98. Also shown on this figure are

the experimental results obtained by Schumacher [15] for w =

0.62 mm and h = 0.635 mm. This experiment was performed
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Fig. 2. Comparison of the ground plane current density calculated from (3)
to numerical values [16] with h = 20 roils and w = 60 roils. The numerical

values where calculated for a frequency of 3 GHz. The solid curve corresponds
to (3) and the dashed curve corresponds to the numerical values.
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Fig. 3. Comparison of the ground plane current density for both the constant
strip current distribution (3) and for the Kobayashi strip current dktribution
(4) for h = 100 pm. The solid curve correspond to ~ = 10 and the dashed

curve corresponds to ~ = 0.1.

with the tnicrostrip operating at a frequency of 18GHz. For these

values of w and h, the quasi-TEM approximation is well justified,

and even with this crude approximation to the strip currents, the

correlation between these two results is excellent. Fig. 2 shows a

comparison for the normalized current density from (3) to numerical

results obtained from a hybrid finite-element/MOM code [16]. This

comparison once again shows excellent agreement. The numerical

results were calculated for a frequency of 3 GHz with ~ = 3, h = 20

roils and for a ground plane of width 50 h. Notice that the numerical

results reproduce the edge behavior of the truncated ground plane.

This effect is discussed later.

Fig. 3 shows results for the normalized current density for various

values of ~. The curve shows that for very narrow microstrips the

ground plane current spreads out far from the strip edges. However,

for wide rnicrostrips the current is concentrated under the strip.

B. Calculation for JGP with the Kobayashi

current distribution on the strip

Presently, the Kobayashi distribution [14] is accepted as being the

most accurate closed-form approximation to the current density on the

strip. This distribution will now be used to determine JGP (z). With
the Kobayashi distribution, the current on the ground plane reduces

to the following:

JGP(Z) = -+{~[hn-’ (*) +tan-’ (*)] )

[ 1]1_~ [( ’2–~2–A2)2+4~2’2 ]1’2–(’2–~2–A2) +

A [(z2-h2)2+4h2z2] -,A2z2+,A4

(4)

where

z, ,L-~A2-z~

and

ZhTui
c=(l– K)v J+~.

Fig. 1 shows how the results of this equation correlate with

Schumacher’s experimental values. The plots show how (4) does an

excellent job of predicting the ground plane current density. This

figure also shows that there is very little difference between (3)

(constant current on strip) and (4) (Kobayashi distribution). This

point is further demonstrated in Fig. 3. In this figure the ground

plane current densities predicted from both (3) and (4) are plotted

for different values of ~. This figure shows that there is essentially

no difference between the two distributions. Therefore, the simpler

of the two expressions in (3) can be used.

III. CALCULATION OF GROUND PLANE Loss

Characterizing the conductor loss for planar circuits, such as for

microstrips or coplanar waveguides (CPW), has been the object of

much attention, especially recently [ 1]–[10]. In recent work [11]

and [12], closed-form expressions for the conductor loss for both

microstrips and coplanar waveguides (CPW) were derived.

The expression for the attenuation constant of microstrip line given

in [11, (117)] is due to the conducting strip only (it does not include

ground plane losses), and was shown to be valid for a wide range

of strip thickness to skin depth ratios (&). In order to compare

our predicted loss for a micro strip to experimental data for situations

where the ground plane loss may be significant (that is for large ~),

the effects of ground plane loss on the attenuation constant needs to

be characterized.

Figs. 8 and 9 in [11] illustrate the importance of ground plane

loss on the total loss of the structure. In these figures the strip loss

calculated from [11, (117)] is compared to experimental data taken

from Goldfarb and Platzker [4]. Also shown in these two figures

are results for loss when both the strip and ground plane losses me

included. As expected, for the narrow strips, there is essentially no

difference in the results with or without the ground plane loss. For

the wider strip however, the predicted conductor loss correlates very

well with the experimental when the ground plane loss is included.

The standard manner of calculating the ground plane loss is based

on Wheeler’s incremental inductance role [1], and is of the form

Qc =
&Eg

J J

where Zo is the characteristic impedance, L is the inductance per
unit length,~ denotes the derivative of L with respect to the

““=%(+)21:Fan-’(=) ’tan+=)l”z (6)
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incremental recession of wall j of the structure in the normal

direction, and R. is the standard Leontovich surface impedance [13].

The attenuation constant computed from Wheeler’s rule can be

separated into two parts, one part corresponding to the loss on the

ground plane, and the second part corresponding to the loss on the

strip. For a wide range of applications this expression works well.

However, if & is small (where 6,k is the skin depth and t is the

thickness of a conductor) or even comparable to 1, then the Wheeler

rule breaks down giving very poor results for the loss on the strip.

This is due in part to the fact that the Leontovich surface impedance

is no longer valid. On the other hand, the part of the expression that

corresponds to the loss on the ground plane is still fairly accurate

for large skin depths (as long as the thickness of the ground plane is

large compared to the skin depth), because the Leontovich surface

impedance is still valid. In this paper, we present an alternative

approach to the calculation of the ground plane loss which does not

require knowledge of L and its dependence on ground plane position,

but only on the characteristic impedance of the line and its geometric

parameters.

Using a standard wall loss perturbation analysis, it can be shown

that the loss in the ground plane is given by

R. M
a~p . —

2Z012 I
lJ~p(x) 1’ dz (5)

—m

where R. is the Leontovich surface impedance, Z. is the charac-

teristic impedance of the microstrip line, 1 is the total current, and

JGP (z) is the current density on a perfectly conducting ground plane.

Using (3) for the ground plane current density ~Gp reduces to (6),

shown at the bottom of the previous page. Unfortunately this integral

cannot be evaluated in closed form to get an explicit expression for

the ground plane loss and must be evaluated numerically.

The ground plane losses predicted by (6) and that obtained from

applying Wheeler’s rule for a given micro strip structure are shown
in Fig. 4 for f = 2 GHz and f = 20 GHz respectively. This figure

shows that both methods predict approximately the same loss for

~ < 1. Above this value the curves start to deviate. This deviation is

probably traceable to the derivative of L needed in Pucel’s formula

[2]. Wheeler [17] claims that his formulas for L are accurate to 1%,

but this assertion says nothing about the accuracy of derivatives of L

and therefore caution must be used when employing values of ~

computed in this way. It should be noted that for most application:

~ < 1, and for these cases there is essentially no difference in the

two methods.

IV. CONCLUSION

A Green’s function approach was used to derive two different

expressions for the current on the ground plane of a microstrip line.

These expressions have been compared to both experimental and

numerical values, and excellent correlation was demonstrated. We

have also shown that there is very little difference between the two

expressions for the current, and if the current on the ground plane is

needed, the simpler of the two expressions (3) can be used without

significant loss in accuracy.

Equation (3) was used to calculate the loss due to the ground plane

for a microstrip structure, and was shown to agree well with results

from Wheeler’s rule, especially for ~ < 1. Even for 1 < ~ < 10

the relative discrepancy in ~GP does not exceed 10’%o.

A procedure similar to that given in Section II-A has also been

used to determine the ground plane current on a coupled line. The

result is, as one might expect, a superposition of terms in the form

of (3) due to the different lines. If one is interested in the ground

plane loss of a coupled microstrip structure, then such a result could

be inserted into (5).
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Fig. 4. Comparison for the results from PuceI’s formula for the ground plane

loss to the results presented here, see (6). These two sets of curve were
generated for h = 100 pm and for j = 2 and 10 GHz, respectively. The

solid curves are our results and the dashed curves are the results from Pucel’s
formula.

Adjacent printed circuit lines fabricated on circuit boards used in

electronic products can be investigated with the results presented in

this paper. The simple closed form expression for the current density

on the ground plane (3) allows one to investigate how the current

spreads out from under the strip. The spreading out of the current

density on the ground plane influences the coupling between adjacent

circuit traces located above a common ground plane, as discussed by

Johnson and Graham [18]. Johnson and Graham [18] have a heuristic

expression for the ground plane current which they relate to coupling

(or crosstalk) between adjacent traces.

This expression can also be used to indicate how close to the

edge of a ground plane a microstrip line can be located or how wide

a truncated ground plane might need to be. In order for the edge

effects to be minimized, the current density close to the edge must

be sufficiently small. Equation (3) provides an analytical basis by

which to estimate this effect.

This expression was derived assuming that the ground plane

was infinitely wide. The current density near the edges of a finite

ground plane becomes large and our expression cannot reproduce this.

However, as shown in Fig. 2, our expression is correct everywhere

except within about 50 roils from the edge for a 1000-mil-wide ground

plane. This expression can be used to give an indication of how large

a ground plane may be needed such that the current is undisturbed.
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Determination of the Eigenfrequencies of a

Ferrite-Filled Cylindrical Cavity Resonator

Using the Finite Element Method

Gilbert C. Chinn, Larry W. Epp, and Gregory M. Wilkins

Abstract-A formulation of the Finite Element Method (FEM) partic-

ular to axisymmetric problems containing anisotropic media is compared

to an analytic solution. In particular, the resonant frequencies of a
longitudinally biased ferrite-filled cylindrical cavity are examined. For

comparison, a solution of the characteristic equation for the lossless,
ferrite-filled cylindrical wavegnide was modified to give the resonant
frequencies of the cylindrical cavity. This analytical solution was then
used to examine the error in the FEM formulation for the anisotropic case.
It is noted that the FEM formulation for anisotropic material presented,
based on both node and edge-based elements, is found to be free of

spurious solutions.
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I. INTRODUCTION

I T IS NATURAL to extend tangential vector finite elements to

not only inhomogeneities, but to the anisotropic case. Specifically,

Wang and Ida [1] were able to show that this extension could be free

of spurious modes. Their method was based on the use of tetrahedral

and hexahedral elements. They noted that for permeability tensors

without off-diagonal terms, symmetry could be applied to simplify

the analysis. This simplification, however, is not suitable for ferrite-

filled cylindrical cavities. For a ferrite-filled cylindrical waveguide,

Dillon et al. [2] applied periodic boundaty conditions to solve for

phase constants. This procedure reduces the order of the solution to

one-half of the original three dimensional problem.

Another method of reducing computational complexity is detailed

here. By applying a Fourier mode expansion to the fields in these

azimuthally invariant geometries, simplification is inherent. All modal

information is retained, important for the ferrite-filled cavity where

the resonant frequencies of the +n modes can differ. The FEM

analysis is thus effectively reduced to two dimensions.

Axisymmetric geometries of interest in the past included circular

waveguides filled with longitudinally biased ferrites. Solutions for

the phase constants of these ferrite-filled circular waveguides can be

modified for the ferrite-filled cavity. Application of the appropriate

boundary conditions then gives a characteristic equation which is

solved for the eigenfrequencies. This solution will be outlined, and

used as comparison for the FEM analysis.

II. FINITE ELEMENT FORMULATION

The tensor characterizing a longitudinally biased ferrite is given by

‘=($’ ‘r!) ‘1)

where p, p’, and #, are functions of frequency and the DC biasing

field for a magnetized ferrite. Because of the axisymmetry of the

problem, the weak form of the wave equation is written in terms of

electric field components normal and transverse to the ~ direction

using first order triangular nodal elements and first order edge-based

finite elements [3]. The field is then expanded as a Fourier sum over

the azimuthal variable, 0. The basis elements for this expansion are
chosen to go ase~”d.This choice is necessary in order to correctly

model the fields within media characterized by (1). Moreover, it also

allows the eigenvalues, corresponding to the eigenfrequencies here, to

be found independently for each value of n by solving the generalized

eigenvalue equation for the cavity

[S]{a} = k:[’q{a}. (2)

This formalism yields sparse real-symmetric [S] and [T] matrices for

lossless, Hermitian p tensors. Consequently, standard mathematical

library routines are used to solve the generalized eigenvalue equation.

III. ANALYTIC CHARACTERISTIC EQUATION

The analytic characteristic equation for cylindrical ferrite waveg-

uides is due to Kales [4]. In this section, a brief summary of its

modification for the particular case of a metallic cavity is presented.

The cavity under consideration has a radius of R and a length of L

and is filled with a single material described by (1).

Application of the boundary conditions at the ends of the cavity

requires the longitudinal electric field component, E,, and the trans-

verse magnetic field component, Ht. to vary as cos ( -(~ ) while H,
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