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Closed-Form Expressions for the Current Density
on the Ground Plane of a Microstrip Line,
with Application to Ground Plane Loss

Christopher L. Holloway and Edward F. Kuester

Abstract—In this paper closed-form expressions for the current density
on the ground plane of a microstrip line are derived. The derivation
is based on a quasistatic Green’s function approach. These expressions
are compared to both experimental and numerical values, and excellent
agreement is demonstrated. The loss on a ground plane for a microstrip
structure is calculated using these expressions, and comparisons with
results from Wheeler’s incremental inductance rule are made.

1. INTRODUCTION

Microstrip lines are used in numerous electronic devices and
products ranging from feeding networks in MIMIC components to
signal traces on printed circuit boards. The cuarrent distribution on
the ground plane of the microstrip line can be important for design
considerations. For example, knowledge of ground plane current
distribution can aid in determining the amount of coupling between
adjacent printed circuit traces fabricated on a common ground plane
(see [18]), or can aid in determining how wide a truncated ground
plane might need to be to ensure that edge effects are acceptably low.
Knowing this current distribution can also aid in determining the loss
due to finite conductivity of the ground plane (see Section III).

Numerical techniques can be used to obtain the current on the
ground plane. These techniques are capable of high accuracy, but
are computationally intensive and hence do not lend themselves to
simple design procedures. The current on the ground plane can be
derived from an integration of the current on the strip with a Green’s
function. In this paper two different approximate expressions for the
current distribution on the strip are used. The first is a very crude
constant approximation for the strip current, whereas the second is
the more accurate Kobayashi distribution.

This paper is organized as follows: After the introduction, the Sec-
tion II presents derivations of the ground plane current distributions
for different strip current approximations. Section III illustrates how
the loss due to the ground plane can be calculated, and compares this
to results obtained from Wheeler's incremental inductance rule. In
Section IV, other applications of these closed-form expressions are
discussed.

II. DERIVATION OF A CLOSED FORM EXPRESSION FOR
THE GROUND PLANE CURRENT ON A MICROSTRIP LINE

If the H fields for the microstrip line (Fig. 1) are known then the
current density on the ground plane can be found by

Jap(x) = @, X E’y:_h. 1)

In general, all three vector components of current may exist.
However. in planar circuits the .J. component of the current is often
the dominant component, as shown in [14] and [15]. Schumacher [15]
shows that up to 12GH = (for ¥ = .98), the ratio mﬂ < 0.1
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Fig. 1. Results for the normalized current density for a microstrip for w =
0.62 mm and h = 0.635 mm, where z is the distance measured from the
center of the strip. Also shown here are the experimental results obtained from
Schumacher [15]. The solid curve corresponds to a constant strip current,
the dashed curve corresponds to the Kobayaski distributions, and the stars
corresponds to Schumacher’s experimental results.

When this ratio is squared, the result is only 1.0% of the total power
loss. Kobayashi {14] also shows that even as high as 20 GHz (for
% = 10 and smaller), the ratio Ilij\l::j < 0.15. Little generality is
lost by considering this quasi-TEM case, and so only the » component
of the current, and thus the x component of the H-field, is needed.

The z component of the H-fields can be obtained from the
zcomponent of the magnetic vector potential (4), where A. can
be found from a quasistatic Green’s function approach (for details
see [12]). Leaving out the details, it can be shown that the current
density on the ground plane reduces to

ho[u/? ) dz’

Jop(z) = ;/—w/zJZ(x)[(r—m,)2+h2] 2
where w is the width of the strip and % is the height of the strip
above the ground plane (see Fig. 1).

If the current density on the strip is known then the current
density on the ground plane is determined from (2). In this paper
two different approximate expressions for the current distribution on
the strip are used to determine Jop (). The first is a crude constant
approximation for J., whereas the second is the more accurate
Kobayashi distribution.

A. Calculation for Jap With a Constant
Current Distribution on the Strip

In this section the ground plane current is calculated by assuming
that the current on the strip takes on the form: J. = 1{7’ where I is
the total current on the strip.

Upon substitution into (2), the current density on the ground plane
reduces to the simple closed form expression

Jap(z) = —é [tan‘l <%) +tan™" (%h?“)} (3)

Fig. 1 shows the results for the normalized current density (‘;gi Eg;)
for a microstrip for 37 = 0.98. Also shown on this figure are
the experimental results obtained by Schumacher [15] for w =

0.62 mm and h = 0.635 mm. This experiment was performed
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Fig. 2. Comparison of the ground plane current density calculated from (3)
to numerical values [16] with i = 20 mils and w = 60 mils. The numerical
values where calculated for a frequency of 3 GHz. The solid curve corresponds
to (3) and the dashed curve corresponds to the numerical values.
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Fig. 3. Comparison of the ground plane current density for-both the constant
strip current distribution (3) and for the Kobayashi strip current distribution
(4) for h = 100 pm. The solid curve correspond to % = 10 and the dashed
curve corresponds to 3 = 0.1.

with the microstrip operating at a frequency of 18GHz. For these
values of w and k, the quasi-TEM approximation is well justified,
and even with this crude approximation to the strip currents, the
correlation between these two results is excellent. Fig. 2 shows a
comparison for the normalized current density from (3) to numerical
results obtained from a hybrid finite-element/MOM code [16]. This
comparison once again shows excellent agreement. The numerical
results were calculated for a frequency of 3 GHz with 7 = 3, A = 20
mils and for a ground plane of width 50 h. Notice that the numerical
results reproduce the edge behavior of the truncated ground plane.
This effect is discussed later.

Fig. 3 shows results for the normalized current density for various
values of . The curve shows that for very narrow microstrips the
ground plane current spreads out far from the strip edges. However,
for wide microstrips the current is concentrated under the strip.
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B. Calculation for Jap with the Kobayashi
current distribution on the strip

Presently, the Kobayashi distribution [14] is accepted as bemg the
most accurate closed-form approximation to the current density on the
strip. This distribution will now be used to determine Jgp(z). With
the Kobayashi distribution, the current on the ground plane reduces
to the following:

Jar(a) = —L{9F [tan™! (2522) + tan™ (2525)]
KA [(zz~h2—A2)2+4h2x2]1/2—(I2—h2—A2) %
A [(22—h?)2+4h222] 24222 13 A%
C))
where
w _10(1—2¢)/A2 42
A =3 i [& = A——A A2—~1‘%
and
C=(1-K rKw

Fig. 1 shows how the results of this equation correlate with
Schumacher’s experimental values. The plots show how (4) does an
excellent job of predicting the ground plane current density. This
figure also shows that there is very little difference between (3)
(constant current on strip) and (4) (Kobayashi distribution). This
point is further demonstrated in Fig. 3. In this figure the ground
plane current densities predicted from both (3) and (4) are plotted
for different values of 3. This figure shows that there is essentially
no difference between the two distributions. Therefore, the simpler
of the two expressions in (3) can be used.

HI. CALCULATION OF GROUND PLANE LOSS

Characterizing the conductor loss for planar circuits, such as for
microstrips or coplanar waveguides (CPW), has been the object of
much attention, especially recently [1]-[10]. In recent work [11]
and [12], closed-form expressions for the conductor loss for both
microstrips and coplanar waveguides (CPW) were derived.

The expression for the attenuation constant of microstrip line given
in [11, (117)] is due to the conducting strip only (it does not include
ground plane losses), and was shown to be valid for a wide range
of strip thickness to skin depth ratios ( Et ). In order to compare
our predicted loss for a microstrip to expenmental data for situations
where the ground plane loss may be significant (that is for large 3),
the effects of ground plane loss on the attenuation constant needs to
be characterized.

Figs. 8 and 9 in [11] illustrate the importance of ground plane
loss on the total loss of the structure. In these figures the strip loss
calculated from [11, (117)] is compared to experimental data taken
from Goldfarb and Platzker [4]. Also shown in these two figures
are results for loss when both the strip and ground plane losses are
included. As expected, for the narrow strips, there is essentially no
difference in the results with or without the ground plane loss. For
the wider strip however, the predicted conductor loss correlates very
well with the experimental when the ground plane loss is included.

The standard manner of calculating the ground plane loss is based
on Wheeler’s incremental inductance rule [1], and is of the form

ozanj

where Z, is the characteristic impedance, L is the inductance per
unit length, % denotes the derivative of L with respect to the
7

Z;Lo

agp =

B (L) [ e (
27, \wm oo

2
_Qx) + tan! (w+2w>] dr ©)



1206

incremental recession of wall j of the structure in the normal
direction, and R is the standard Leontovich surface impedance [13].

The attenuation constant computed from Wheeler’s rule can be
separated into two parts, one part corresponding to the loss on the
ground plane, and the second part corresponding to the loss on the
strip. For a wide range of applications this expression works well.
However, if % is small (where 6, is the skin depth and ¢ is the
thickness of a conductor) or even comparable to 1, then the Wheeler
rule breaks down giving very poor results for the loss on the strip.
This is due in part to the fact that the Leontovich surface impedance
is no longer valid. On the other hand, the part of the expression that
corresponds to the loss on the ground plane is still fairly accurate
for large skin depths (as long as the thickness of the ground plane is
large compared to the skin depth), because the Leontovich surface
impedance is still valid. In this paper, we present an alternative
approach to the calculation of the ground plane loss which does not
require knowledge of L and its dependence on ground plane position,
but only on the characteristic impedance of the line and its geometric
parameters.

Using a standard wall loss perturbation analysis, it can be shown
that the loss in the ground plane is given by

R, o 2
agp = m/m |[Jap(z)|” dz &)

where R, is the Leontovich surface impedance, 7, is the charac-
teristic impedance of the microstrip line, I is the total current, and
Jap () is the current density on a perfectly conducting ground plane.
Using (3) for the ground plane current density agp reduces to (6),
shown at the bottom of the previous page. Unfortunately this integral
cannot be evaluated in closed form to get an explicit expression for
the ground plane loss and must be evaluated numerically.

The ground plane losses predicted by (6) and that obtained from
applying Wheeler’s rule for a given microstrip structure are shown
in Fig. 4 for f = 2 GHz and f = 20 GHz respectively. This figure
shows that both methods predict approximately the same loss for
% < 1. Above this value the curves start to deviate. This deviation is
probably traceable to the derivative of L needed in Pucel’s formula
[2]. Wheeler [17] claims that his formulas for L are accurate to 1%,
but this assertion says nothing about the accuracy of derivatives of L
and therefore caution must be used when employing values of %
computed in this way. It should be noted that for most application]s
% < 1, and for these cases there is essentially no difference in the
two methods.

1V. ConNcLusioN

A Green’s function approach was used to derive two different
expressions for the current on the ground plane of a microstrip line.
These expressions have been compared to both experimental and
numerical values, and excellent correlation was demonstrated. We
have also shown that there is very little difference between the two
expressions for the current, and if the current on the ground plane is
needed, the simpler of the two expressions (3) can be used without
significant loss in accuracy.

Equation (3) was used to calculate the loss due to the ground plane
for a microstrip structure, and was shown to agree well with results
from Wheeler’s rule, especially for % < 1. Even for 1 < ¥ < 10
the relative discrepancy in agp does not exceed 10%.

A procedure similar to that given in Section II-A has also been
used to deterniine the ground plane current on a coupled line. The
result is, as one might expect, a superposition of terms in the form
of (3) due to the different lines. If one is interested in the ground
plane loss of a coupled microstrip structure, then such a result could
be inserted into (5).
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Adjacent printed circuit lines fabricated on circuit boards used in
electronic products can be investigated with the results presented in
this paper. The simple closed form expression for the current density
on the ground plane (3) allows one to investigate how the current
spreads out from under the strip. The spreading out of the current
density on the ground plane influences the coupling between adjacent
circuit traces located above a common ground plane, as discussed by
Johnson and Graham [18]. Johnson and Graham [18] have a heuristic
expression for the ground plane current which they relate to coupling
(or crosstalk) between adjacent traces.

This expression can also be used to indicate how close to the
edge of a ground plane a microstrip line can be located or how wide
a truncated ground plane might need to be. In order for the edge
effects to be minimized, the current density close to the edge must
be sufficiently small. Equation (3) provides an analytical basis by
which to estimate this effect.

This expression was derived assuming that the ground plane
was infinitely wide. The current density near the edges of a finite
ground plane becomes large and our expression cannot reproduce this.
However, as shown in Fig. 2, our expression is correct everywhere
except within about 50 mils from the edge for a 1000-mil-wide ground
plane. This expression can be used to give an indication of how large
a ground plane may be needed such that the current is undisturbed.
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Determination of the Eigenfrequencies of a
Ferrite-Filled Cylindrical Cavity Resonator
Using the Finite Element Method

Gilbert C. Chinn, Larry W. Epp, and Gregory M. Wilkins

Abstract—A formulation of the Finite Element Method (FEM) partic-
ular to axisymmetric problems containing anisotropic media is compared
to an analytic solution. In particular, the resonant frequencies of a
longitudinally biased ferrite-filled cylindrical cavity are examined. For
comparison, a solution of the characteristic equation for the lossless,
ferrite-filled cylindrical waveguide was modified to give the resonant
frequencies of the cylindrical cavity. This analytical solution was then
used to examine the error in the FEM formulation for the anisotropic case.
1t is noted that the FEM formulation for anisotropic material presented,
based on both node and edge-based elements, is found to be free of
spurious solutions.
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1. INTRODUCTION

T IS NATURAL to extend tangential vector finite elements to

not only inhomogeneities, but to the anisotropic case. Specifically,
Wang and Ida [1] were able to show that this extension could be free
of spurious modes. Their method was based on the use of tetrahedral
and hexahedral elements. They noted that for permeability tensors
without off-diagonal terms, symmetry could be applied to simplify
the analysis. This simplification, however, is not suitable for ferrite-
filled cylindrical cavities. For a ferrite-filled cylindrical waveguide,
Dillon et al. [2] applied periodic boundary conditions to solve for
phase constants. This procedure reduces the order of the solution to
one-half of the original three dimensional problem.

Another method of reducing computational complexity is detailed
here. By applying a Fourier mode expansion to the fields in these
azimuthally invariant geometries, simplification is inherent. All modal
information is retained, important for the ferrite-filled cavity where
the resonant frequencies of the £n modes can differ. The FEM
analysis is thus effectively reduced to two dimensions.

Axisymmetric geometries of interest in the past included circular
waveguides filled with longitudinally biased ferrites. Solutions for
the phase constants of these ferrite-filled circular waveguides can be
modified for the ferrite-filled cavity. Application of the appropriate
boundary conditions then gives a characteristic equation which is
solved for the eigenfrequencies. This solution will be outlined, and
used as comparison for the FEM analysis.

II. FiNiTE ELEMENT FORMULATION

The tensor characterizing a longitudinally biased ferrite is given by

S T
p=ju p 0 ¢y
0 0 =

where 1, ¢', and p. are functions of frequency and the DC biasing
field for a magnetized ferrite. Because of the axisymmetry of the
problem, the weak form of the wave equation is written in terms of
electric field components normal and transverse to the ¢ direction
using first order triangular nodal elements and first order edge-based
finite elements [3]. The field is then expanded as a Fourier sum over
the azimuthal variable, ¢. The basis elements for this expansion are
chosen to go as e/™®. This choice is necessary in order to correctly
model the fields within media characterized by (1). Moreover, it also
allows the eigenvalues, corresponding to the eigenfrequencies here, to
be found independently for each value of n by solving the generalized
eigenvalue equation for the cavity

[S{a} = K3[THa}. @

This formalism yields sparse real-symmetric [S] and [T] matrices for
lossless, Hermitian z tensors. Consequently, standard mathematical
library routines are used to solve the generalized eigenvalue equation.

III. ANALYTIC CHARACTERISTIC EQUATION

The analytic characteristic equation for cylindrical ferrite waveg-
uides is due to Kales [4]. In this section, a brief summary of its
modification for the particular case of a metallic cavity is presented.
The cavity under consideration has a radius of R and a length of L
and is filled with a single material described by (1).

Application of the boundary conditions at the ends of the cavity
requires the longitudinal electric field component, E, and the trans-
verse magnetic field component, H.. to vary as cos(vz) while H,
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